Jumat, 17 Maret 2017

kalor

PENGERTIAN KALOR
Kalor adalah salah satu bentuk energi yang dapat berpindah dari satu benda ke benda lainnya karena adanya perbedaan suhu. Ketika dua benda yang memiliki perbedaan suhu bertemu maka kalor akan mengalir (berpindah) dari benda yang bersuhu tinggi ke benda yang bersuhu rendah. Contohnya ketika kita mencampurkan air dingin dengan air panas, maka kita akan mendapatkan air hangat. Banyak yang tidak tahu perbedaan antara suhu dan kalor, Suhu adalah nilai yang terukur pada termometer, sedangkan kalor adalah energi yang mengalir dari satu benda ke benda lainnya. Adapula ilmuan dari Amerika bernama Benjamin Thompson mengatakan bahwa kalor bukanlah zat alir, melainkan energi yang terjadi karena adanya proses mekanik, seperti gesekan.

B. RUMUS DANSATUAN KALOR
Satuan kalor adalah Kalori (Kal) atau Joule (J). Kalori adalah banyaknya kalor yang dibutuhkan untuk memanaskan 1 gram air agar suhunya menjadi 1 derajat Celcius.
1 Kalori = 4,2 Joule
1 Joule = 0,24 Kalori
Rumus Kalor :


Keterangan :
Q = Kalor (J)
m : Massa Benda (kg)
c = Kalor Jenis (J Kg oC)
ΔT = Perubahan Suhu (oC)

C. KALOR DAN PERUBAHAN PADA BENDA
1. Kalor Dapat Mengubah Suhu Zat
Pada hakikatnya, setiap benda yang suhunya lebih dari nol mutlak, maka benda tersebut memiliki Kalor. Kandungan kalor inilah yang akan menentukan berapa suhu tersebut. Apabila benda ini dipanaskan maka benda tersebut menerima tambahan kalor sehingga suhunya meningkat. Sedangkan apabila benda tersebut didinginkan maka benda tersebut melepaskan kalor sehingga suhunya menurun.
2. Kalor Dapat Mengubah Wujud Zat
Beberapa benda jika diberikan kalor dalam satuan tertentu, benda tersebut akan mengalami perubahan wujud. Contohnya adalah ketika es dipanaskan (diberi kalor) maka es (wujud padat) tersebut akan menjadi air (Wujud Gas), dan apabila pemanasan terus dilakukan maka air tadi juga akan menjadi Gas. Titik dimana suatu zat akan berubah menjadi Zat Cair disebut Titik Cair atau Titik Lebur benda.

D. KALOR JENIS DAN KAPASITAS KALOR
Kalor Jenis Berbagai Zat
Berdasarkan penelitian didapatkan bahwa jika kalor diberikan pada dua benda yang berbeda, maka akan menghasilkan suhu yang berbeda pula, Contohnya ketika minya dan air dipanaskan dengan suhu yang sama maka minyak akan memiliki perubahan suhu 2 kali lebih besar dibandingkan air.  Hal Ini disebabkan oleh perbedaan kalor jenis yang dimiliki suatu benda. Kalor Jenis Benda adalah banyaknya kalor yang diperlukan untuk menaikkan suhu dari 1 kg massa benda tersebut menjadi 1 derjat celcius. Satuan dari Kalor Jenis adalah Kalori / GramoCelcius atau dalam Sistem Internasional ditetapkan dengan Joule / KilogramoCelcius. Kalor Jenis dapat dituliskan dalam persamaan berikut :
Rumus Kalor Jenis
KALOR JENIS
Keterangan :
Q = Kalor (J)
m : Massa Benda (kg)
c = Kalor Jenis (J Kg oC)
ΔT = Perubahan Suhu (oC)
Sedangkan kapasitas kalor adalah jumlah kalor yang diperlukan untuk menaikkan suhu zat tersebut sebanyak 1 derajat Celcius. Jika kalor Q menghasilkan suhu sebesar t maka kapasitas kalor dapat dirumuskan
Kapasitas Kalor
RUMUS KAPASITAS KALOR
E. PERPINDAHAN KALOR
Seperti yang telah kami jelaskan di awal bahwa perpindahan kalor terjadi dari benda bersuhu tinggi ke benda yang bersuhu rendah. Ada tiga jenis perpindahan kalor yang dapat terjadi, yaitu :
1. Perpindahan Kalor Secara Konduksi
Perpindahan Kalor secara konduksi adalah perpindahan kalor melalui suatu zat perantara (logam) tanpa disertai perpindahan partikel – partikel zat tersebut secara permanen. Contohnya adalah ketika kita memanaskan salah satu ujung logam, maka ujung logam lainnya akan ikut panas karena terjadi hantaran kalor dari suhu tinggi ke suhu rendah. Ketika memanaskan salah satu ujung logam, maka partikel yang terdapat pada ujung logam tersebut akan bergetar dan membuat getaran terjadi pada partikel lain yang terhubung dengannya. Sehingga seluruh partikel logam tersebut akan bergetar walaupun hanya satu ujung logam yang dipanaskan, nah hal ini lah yang akan merangsang terjadinya perpindahan kalor.
2. Perpindahan Kalor Secara konveksi
Perpindahan kalor secara konveksi adalah perpindahan kalor melalui suatu zat yang disertai dengan perpindahan bagian-bagian zat tersebut. Konveksi dapat terjadi pada zat cair atau gas. Ada dua jenis perpindahan kalor secara konveksi, yaitu :
a. Konveksi Alamiah
Konveksi alamiah adalah konveksi yang dipengaruhi gaya apung tanpa faktor luar, dan disebabkan oleh karena adanya perbedaan massa jenis benda. Contohnya adalah pada pemanasan air, massa jenis partikel air yang sudah panas akan naik menjauh dari api dan digantikan dengan partikel air lain yang suhunya lebih rendah. Proses ini membuat seluruh partikel zat cair tersebut akan panas sempurna.
b. Konveksi Paksa
Konveksi paksa adalah konveksi yang terjadi karena adanya pengaruh faktor luar (contoh tekanan), dan perpindahan kalor dilakukan dengan sengaja/dipaksakan. Artinya aliran panas kalor dipaksa menuju ke tempat yang ingin dituju dengan bantuan faktor luar seperti tekanan. Contohnya adalah pada kipas angin yang akan membawa udara dingin ke tempat yang panas, dan radiator mobil yang memiliki sistem pendingin mesin.
3. Perpindahan Kalor Secara Radiasi
Perpindahan kalor secara Radiasi adalah proses perpindahan kalor yang tidak menggunakan zat perantara. Perpindahan kalor secara radiasi berbeda dengan konduksi dan konveksi. Pada Radiasi, agar terjadinya perpindahan kalor, kedua benda tidak harus bersentuhan karena kalor dapat berpindah tanpa zat perantara. Artinya kalor tersebut akan di pancarkan ke segala arah oleh sumber panas, dan akan mengalir ke segala arah. Contohnya adalah saat kita dekat dengan api unggun dari sudut manapun, maka kita tetap akan merasakan kehangatan dari sumber api, contoh lainnya adalah panas matahari yang sampai ke bumi dan planet – planet lain.

4. Pencegahan perpindahan kalor
Perpindahan kalor secara konduksi, konveksi, dan radiasi dapat dicegah dengan mengisolasi ruangan tersebut. Contoh sederhana penerapan cara ini adalah pada termos. Termos digunakan untuk menjaga suhu air tetap panas dengan mencegah perpindahan kalornya.

F. KALORIMETER
Alat untuk mengukur kalor
Kalorimeter ini terdiri atas dua buah bejana dari tembaga yang kalor jenisnya belum diketahui. Bejana tembaga kecil diletakkan dalam bejana lain yang lebih besar. Agar kedua bejana tidak bersentuhan, diantara kedua bejana tersebut diletakkan isolator sebagai bahan penyekat kalor, contohnya gabus. Bahan isolator ini berfungsi untuk menahan kalor yang ada di dalam kalorimeter agar tidak keluar serta tidak ada kalor yang masuk dari luar. Umumnya tutup yang digunakan terbuat dari bahan kayu yang juga dapat berfungsi sebagai isolator yang baik. Pada tutupnya terdapat dua buah lubang yang berguna untuk meletakkan termometer dan pengaduk. Pada waktu sampel logam dimasukkan ke dalam kalorimeter, air di dalamnya tidak perlu diaduk agar sistem dapat mencapai keseimbangan termal dengan segera. Batang pengaduk ini biasanya terbuat dari bahan yang sama dengan bejana kalorimeter.

GLBB DAN GLB

Gerak Lurus Beraturan (GLB) dan Gerak Lurus Berubah Beraturan (GLBB)

Gerak Lurus Beraturan

Gerak lurus beraturan (GLB) adalah gerak suatu benda yang menempuh lintasan garis lurus dimana dalam setaip selang waktu yang sama benda menempuh jarak yang sama. Pada gerak lurus beraturan kecepatan dimiliki benda tetap ( v = tetap ) sedangkan percepatannya sama dengan nol ( a = 0 )
Kecepatan tetap artinya baik besar maupun arahnya tetap. Kecepatan tetap yaitu benda menempuh jarak yang sama untuk selang waktu yang sama. Misalnya sebuah mobil bergerak dengan kecepatan tetap 75 km/jsm atau 1,25km/menit, berarti setiap menit mobil itu menempuh jarak 1,25 km. Karena kecepatan benda tetap, maka kata kecepatan pada gerak lurus beraturan dapat diganti dengan kata kelajuan. Dengan demikian, dapat juga kita definisikan, gerak lurus beraturan sebagai gerak suatu benda pada lintasan lurus dengan kelajuan tetap.



V = s / t


dimana :  v = kecepatan (m/s)
               s = jarak tempuh (m)
               t = waktu tempuh (s)

Grafik Hubungan antara Jarak dengan Waktu

Grafik Hubungan antara Kecepatan  dengan Waktu

Gerak Lurus Berubah Beraturan
Gerak lurus berubah beraturan (GLBB) adalah gerak benda dalam lintasan garis lurus dengan percepatan tetap. Jadi, ciri utama GLBB adalah bahwa dari waktu ke waktu kecepatan benda berubah, semakin lama semakin cepat/lambat...sehingga gerakan benda dari waktu ke waktu mengalami percepatan/perlambatan. Dalam artikel ini, kita tidak menggunakan istilah perlambatan untuk gerak benda diperlambat. Kita tetap saja menamakannya percepatan, hanya saja nilainya negatif. Jadi perlambatan sama dengan percepatan negatif.

Contoh sehari-hari GLBB adalah peristiwa jatuh bebas. Benda jatuh dari ketinggian tertentu di atas permukaan tanah. Semakin lama benda bergerak semakin cepat. Kini, perhatikanlah gambar di bawah yang menyatakan hubungan antara kecepatan (v) dan waktu (t) sebuah benda yang bergerak lurus berubah beraturan dipercepat.



vo = kecepatan awal (m/s)
vt = kecepatan akhir (m/s)
a = percepatan
t = selang waktu (s)

Perhatikan bahwa selama selang waktu t , kecepatan benda berubah dari vo menjadi vt sehingga kecepatan rata-rata benda dapat dituliskan:



Kita tahu bahwa kecepatan rata-rata :

 

dan dapat disederhanakan menjadi :



S = jarak yang ditempuh
seperti halnya dalam GLB (gerak lurus beraturan) besarnya jaraktempuh juga dapat dihitung dengan mencari luasnya daerah dibawah grafik v - t
Bila dua persamaan GLBB di atas kita gabungkan, maka kita akan dapatkan persamaan GLBB yang ketiga.....


2. Contoh-Contoh GLBB

 a. Gerak Jatuh Bebas

Ciri khasnya adalah benda jatuh tanpa kecepatan awal (vo = nol). Semakin ke bawah gerak benda semakin cepat.Percepatan yang dialami oleh setiap benda jatuh bebas selalu sama, yakni sama dengan percepatan gravitasi bumi (a = g) (besar g = 9,8 m/s2 dan sering dibulatkan menjadi 10 m/s2)

 

Rumus gerak jatuh bebas ini merupakan pengembangan dari ketiga rumus utama dalam GLBB seperti yang telah diterangkan di atas dengan modifikasi : s (jarak) menjadi h (ketinggian) dan vo = 0 serta percepatan (a) menjadi percepatan grafitasi (g).
coba kalian perhatikan rumus yang kedua....dari ketinggian benda dari atas tanah (h) dapat digunakan untuk mencari waktu yang diperlukan benda untuk mencapai permukaan tahah atau mencapai ketinggian tertentu... namun ingat jarak dihitung dari titik asal benda jatuh bukan diukur dari permukaan tanah


sebagai contoh : Balok jatuh dari ketinggian 120 m berapakah waktu saat benda berada 40 m dari permukaan tanah?

jawab : h = 120 - 40 = 80 m



t = 4 s





2. Gerak Vertikal ke Atas

Selama bola bergerak vertikal ke atas, gerakan bola melawan gaya gravitasi yang menariknya ke bumi. Akhirnya bola bergerak diperlambat. Akhirnya setelah mencapai ketinggian tertentu yang disebut tinggi maksimum (h max), bola tak dapat naik lagi. Pada saat ini kecepatan bola nol (Vt = 0). Oleh karena tarikan gaya gravitasi bumi tak pernah berhenti bekerja pada bola, menyebabkan bola bergerak turun. Pada saat ini bola mengalami jatuh bebas....
Jadi bola mengalami dua fase gerakan. Saat bergerak ke atas bola bergerak GLBB diperlambat (a = - g) dengan kecepatan awal tertentu lalu setelah mencapai tinggi maksimum bola jatuh bebas yang merupakan GLBB dipercepat dengan kecepatan awal nol.



Pada saat benda bergerak naik berlaku persamaan :


vo = kecepatan awal (m/s)
g = percepatan gravitasi
t = waktu (s)
vt = kecepatan akhir (m/s)
h = ketinggian (m)

3. Gerak Vertikal ke Bawah

Berbeda dengan jatuh bebas, gerak vertikal ke bawah yang dimaksudkan adalah gerak benda-benda yang dilemparkan vertikal ke bawah dengan kecepatan awal tertentu. Jadi seperti gerak vertikal ke atas hanya saja arahnya ke bawah. Sehingga persamaan-persamaannya sama dengan persamaan-persamaan pada gerak vertikal ke atas, kecuali tanda negatif pada persamaan-persamaan gerak vertikal ke atas diganti dengan tanda positif.


3. Rangkuman GLB dan GLBB

Demikian artikel tulisan saya tentang Gerak Lurus Beraturan (GLB) dan Gerak Lurus Berubah Beraturan (GLBB). Semoga bermanfaat. Terima Kasih. 

Jarak Perpindahan Kecepatan

Jarak dan Perpindahan

Jarak adalah panjang lintasan yang ditempuh benda tanpa memerhatikan arahnya. Jarak merupakan besaran skalar.
Perpindahan adalah perubahan posisi benda ditinjau dari posisi awal dan posisi akhir benda tersebut.
Perpindahan merupakan besaran vektor, sehingga dapat bernilai positif maupun negatif. Lihat gambar berikut ini!
Gerak satu dimensi
Pada gerak satu dimensi seperti pada gambar di atas, perpindahan bernilai positif jika arahnya ke kanan dan negatif jika arahnya ke kiri. Jika benda bergerak dari posisi x1 ke posisi x2, perpindahannya (∆x) dapat dituliskan sebagai:
Gerak dua dimensi
Pada gerak dua dimensi seperti gambar di samping, perpindahan dapat dicari menggunakan perhitungan resultan dari AB dan BC. Sehingga cara mencarinya menggunakan dalil pythagoras berikut ini:
dengan arah:

Kecepatan dan Kelajuan

Kelajuan sebuah benda yang bergerak menyatakan jarak yang ditempuh benda tersebut tiap satuan waktu tanpa memerhatikan ke arah mana benda tersebut bergerak. Maka dapat disimpulkan bahwa kelajuan merupakan besaran skalar. 
Kecepatan menyatakan perpindahan benda tiap satuan waktu dengan memerhatikan arahnya. Maka dapat disimpulkan bahwa kecepatan merupakan besaran vektor.

Kecepatan dan Kelajuan Rata-Rata

Setelah mengerti bahwa kecepatan dan kelajuan mengandung makna yang berbeda dan dengan mengingat perbedaan antara konsep jarak dan perpindahan, maka berikut ini akan dijelaskan mengenai kelajuan rata-rata dan kecepatan rata-rata.
Kelajuan rata-rata didefinisikan sebagai perbandingan jarak yang ditempuh terhadap waktu yang diperlukan untuk menempuh jarak tersebut.




Kecepatan rata-rata didefinisikan sebagai perbandingan perpindahan yang terjadi terhadap waktu yang diperlukan untuk melakukan perpindahan tersebut.

Kecepatan dan Kelajuan Sesaat

Kecepatan rata-rata maupun kelajuan rata-rata pada pembahasan sebelumnya tidak menjelaskan secara rinci tentang gerakan benda. Dalam banyak hal, informasi yang dibutuhkan adalah kecepatan benda itu pada saat tertentu di posisi tertentu, bukan selama selang waktu tertentu. Kecepatan itu disebut dengan kecepatan sesaat yang dapat diperoleh dengan mengambil selang waktu ∆t yang sangat kecil, mendekati nol. 
Kecepatan sesaat secara matematis dapat dituliskan sebagai berikut.
Umumnya, konsep kecepatan sesaat digunakan pada kejadian yang membutuhkan waktu yang sangat pendek. Dalam kehidupan sehari-hari kecepatan sesaat disebut dengan kecepatan saja tanpa kata sesaat.
Selain itu ada pula istilah kelajuan sesaat yang merupakan besar (harga mutlak) dari kecepatan sesaat. Nilainya selalu positif dan merupakan besaran skalar. Misalnya, kelajuan yang tertera pada speedometer.

Percepatan

Seringkali benda-benda tidak bergerak kecepatan konstan. Sebuah benda dikatakan bergerak dengan percepatan atau perlambatan. Perlambatan adalah nama lain dari percepatan negatif.
Ketika sebuah mobil berangkat dari keadaan diam meninggalkan suatu tempat misalnya, mobil bergerak dipercepat. Namun, ketika mobil tersebut akan tiba di tujuannya, maka mobil tersebut akan mengurangi kecepatannya atau bergerak diperlambat hingga pada akhirnya berhenti bergerak. Jadi, percepatan atau perlambatan itu ada jika kecepatan benda berubah.
Selain percepatan ada pula istilah perlajuan. Perlajuan merupakan besar (harga mutlak) dari percepatan atau perlambatan. Nilainya selalu positif dan merupakan besaran skalar.

Percepatan Rata-Rata

Percepatan rata-rata didefinisikan sebagai perbandingan perubahan kecepatan dengan selang waktunya. Secara matematis ditulis sebagai berikut:
Percepatan rata-rata negatif artinya sama dengan perlambatan rata-rata.

Percepatan Sesaat

Percepatan rata-rata tidak menggambarkan percepatan pada suatu waktu tertentu. Percepatan pada waktu tertentu disebut dengan percepatan sesaat atau dalam kehidupan sehari-hari hanya disebut percepatan.
Percepatan sesaat didefinisikan sebagai limit percepatan rata-rata ketika selang waktunya mendekati nol (sangat kecil). Secara matematis ditulis sebagai berikut:
Itulah pembahasan kita kali ini. Pada pembahasan selanjutnya, akan diuraikan tentang gerak lurus yang terbagi menjadi dua, yaitu gerak lurus dengan kecepatan konstan atau biasa disebut gerak lurus beraturan (GLB) dan gerak lurus dengan percepatan konstan atau biasa disebut gerak lurus berubah beraturan (GLBB). Terima kasih.

Rumus-Rumus Fisika

Gaya

Gaya dalam pengertian ilmu fisika adalah seseatu yang menyebabkan perubahan keadaan benda.

Hukum Newton

Hukum I Newton

Setiap benda akan tetap diam atau bergerak lurus beraturan apabila pada benda itu tidak bekerja gaya.
{\displaystyle \Sigma F=0}

Hukum II Newton

Bila sebuah benda mengalami gaya sebesar F maka benda tersebut akan mengalami percepatan.
{\displaystyle \Sigma F=m\times a}
Keterangan:
  • F : gaya (N atau dn)
  • m : massa (kg atau g)
  • a : percepatan (m/s2 atau cm/s2)

Hukum III Newton

Untuk setiap gaya aksi, akan selalu terdapat gaya reaksi yang sama besar dan berlawanan arah.
{\displaystyle F_{AB}=-F_{BA}}

Gaya gesek

{\displaystyle F_{g}=\mu \times N}
Keterangan:
  • Fg : Gaya gesek (N)
  • {\displaystyle \mu } : koefisien gesekan
  • N : gaya normal (N)

Gaya berat

{\displaystyle w=m\times g}
Keterangan:
  • W : Gaya berat (N)
  • m : massa benda (kg)
  • g : gravitasi bumi (m/s2)

Berat jenis

{\displaystyle s=\rho \times g} atau {\displaystyle s={\frac {w}{V}}}
Keterangan:
  • s: berat bersih (N/m3)
  • w: berat janda (N)
  • V: Volume oli (m3)
  • {\displaystyle \rho }: massak kompor(kg/m3)

Tekanan

{\displaystyle p={\frac {F}{A}}}
Keterangan:
  • p: Tekanan (N/m² atau dn/cm²)
  • F: Gaya (N atau dn)
  • A: Luas alas/penampang (m² atau cm²)
Satuan:
  • 1 Pa = 1 N/m² = 10-5 bar = 0,99 x 10-5 atm = 0,752 x 10-2 mmHg atau torr = 0,145 x 10-3 lb/in² (psi)
  • 1 torr= 1 mmHg

Tekanan hidrostatis

{\displaystyle p_{\text{h}}=\rho \,\!\times g\times h}
{\displaystyle p_{\text{h}}=h\times s}
Keterangan:
  • ph: Tekanan hidrostatis (N/m² atau dn/cm²)
  • h: jarak ke permukaan zat cair (m atau cm)
  • s: berat jenis zat cair (N/m³ atau dn/cm³)
  • ρ: massa jenis zat cair (kg/m³ atau g/cm³)
  • g: gravitasi (m/s² atau cm/s²)

Hukum Pascal

Tekanan yang diberikan pada zat cair dalam ruang tertutup akan diteruskan sama besar ke segala arah.
{\displaystyle {\frac {F_{\text{2}}}{A_{\text{2}}}}={\frac {F_{\text{1}}}{A_{\text{1}}}}}
Keterangan:
  • F1: Gaya tekan pada pengisap 1
  • F2: Gaya tekan pada pengisap 2
  • A1: Luas penampang pada pengisap 1
  • A2: Luas penampang pada pengisap 2

Hukum Boyle

{\displaystyle {V_{\text{1}}}\times {P_{\text{1}}}={P_{\text{2}}}\times {V_{\text{2}}}}

CAHAYA

Cahaya

Cahaya merupakan gelombang elektromagnetik. Benda yang dapat memancarkan cahaya sendiri disebut sumber cahaya. Sedangkan, benda yang tidak dapat memancarkan cahaya disebut benda gelap. Karenanya cahaya memiliki sifat-sifat umum dari gelombang, antara lain :
Advertisment
  1. Dalam suatu medium homogen (contoh: udara), cahaya merambat lurus. Perambatan cahaya disebut juga sebagai sinar.
  2. Pada bidang batas antara dua medium (contoh: bidang batas antara udara dan air), cahaya dapat mengalami pemantulan atau pembiasan.
  3. Jika melewati celah sempit, dapat mengalami lenturan.
  4. Dapat mengalami interferensi.
  5. Dapat mengalami polarisasi.
Setiap benda yang dapat memancarkan cahaya sendiri disebut sumber cahaya, contohnya: matahari, bintang, lampu, lilin, dan lain-lain. Sedangkan, benda-benda yang tidak dapat memancarkan cahaya disebut benda gelap. Pada bab ini akan dibahas mengenai pemantulan dan pembiasan cahaya.

Sifat-Sifat Cahaya

Cahaya merambat lurus

Benda gelap (tidak tembus cahaya) seperti kertas tampak oleh mata manusia karena memantulkan cahaya yang kemudian diterima mata. Benda tampak hijau karena memantulkan cahaya hijau ke mata pengamat. Benda tampak hitam karena tidak ada cahaya yang dipantulkan benda tersebut ke mata.
Benda tembus cahaya seperti plastik dapat dilihat mata melalui sinar pantulnya atau sinar yang diteruskannya. Benda tembus cahaya berwarna kuning, memantulkan cahaya kuning dan juga meneruskan cahaya kuning. Sehingga mata yang menerima sinar pantulnya atau sinar terusannya menerima kesan benda itu berwarna kuning.
Cahaya Merambat Lurus
Telau cahaya pada tembok jari-jarinya lebih besar dari jari-jari kaca baterai
Bila lampu baterai ditutup plastik kuning disorotkan ke tembok warna putih, maka dapat kita lihat telau yang berwarna kuning pada tembok.

Pembuktian Cahaya Merambat Lurus

Pembuktian Cahaya Merambat LurusBayangan lilin tampak terbalik pada tembok, bila karton digeser mendekati lilin bayangan makin besar, sebaliknya jika karton digeser mendekati tembok bayangan lilin pada tembok makin kecil. Hal ini hanya mungkin terjadi jika cahaya merambat lurus.
Jika kita lewatkan berkas cahaya/sinar melalui celah sempit kemudian diarahkan ke balok kaca/ akuarium diisi air, cahaya tampak merambat lurus.
Baik di dalam maupun di luar, balok kaca, cahaya merambat lurus. Silahkan kita coba! Jika di sekolah tidak ada kotak cahaya, gantilah dengan baterai dan celah dapat kita buat menggunakan karton.

Bayang-bayang Cahaya

Bayang Bayang Cahaya
Bila sinar datang pada benda gelap, maka di belakang benda terbentuk ruang gelap yang dinamakan bayang-bayang. Bila ruang gelap itu ditangkap layar, maka bidang gelap yang terbentuk itu pun juga disebut bayang-bayang. Bayang-bayang umbra dibentuk oleh sinarsinar yang merupakan garis singgung luar benda tersebut. Bayang-bayang kabur terbentuk oleh sinar-sinar yang merupakan garis singgung dalam benda-benda tersebut.

Pemantulan Cahaya

Pemantulan cahaya oleh permukaan suatu benda bergantung pada keadaan permukaan benda tersebut. Benda dengan permukaan yang rata (contoh: cermin), memantulkan cahaya dengan teratur. Sedangkan, benda dengan permukaan yang tidak rata atau kasar, memantulkan cahaya dengan tidak teratur atau baur.
Pemantulan TeraturPemantulan Teratur

Pemantulan BaurPemantulan Baur
Pemantulan cahaya pada permukaan rata diamati pertama kali oleh seorang ilmuwan Belkita yang bernama Willebrord Snellius. Kita dapat melakukan pengamatan serupa dengan menggunakan sumber cahaya dan cermin datar yang diletakkan di atas selembar kertas putih polos. Sinar yang keluar dari sumber cahaya disebut sinar datang, sinar yang dipantulkan oleh cermin datar disebut sinar pantul, dan garis yang tegak lurus dengan cermin disebut garis normal.
Pemantulan CahayaPemantulan Cahaya
Dari pengamatan, kita peroleh hukum pemantulan cahaya, yaitu:
  1. Sinar datang, garis normal, dan sinar pantul terletak pada satu bidang datar.
  2. Sudut datang (i) sama dengan sudut pantul (r).
Untuk selanjutnya, setiap ditemukan kata ‘pemantulan’, maka yang dimaksud adalah pemantulan teratur yang memenuhi hukum pemantulan cahaya.